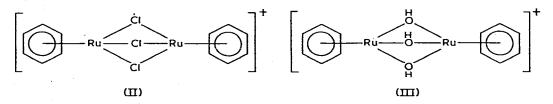
Journal of Organometallic Chemistry, 116 (1976) C29–C30 © Elsevier Sequoia S.A., Lausanne — Printed in The Netherlands

Preliminary communication

CATIONIC AND ANIONIC COMPLEXES OF RUTHENIUM(II) CONTAINING η^6 -ARENE LIGANDS

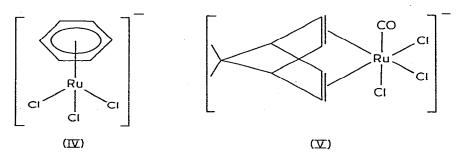

D.R. ROBERTSON and T.A. STEPHENSON*

Department of Chemistry, University of Edinburgh, Edinburgh EH9 3JJ (Great Britain) (Received May 25th, 1976)

Summary

Reaction of $[n^6-C_6H_6RuCl_2]_2$ (I) with NH₄PF₆ in methanol gives high yields of $[Ru_2Cl_3(\eta^6-C_6H_6)_2]PF_6$ whereas with aqueous NaOH, $[Ru_2(OH)_3(\eta^6-C_6H_6)_2]Cl_3H_2O$ is formed; in contrast, reaction of I with CsCl/HCl gives Cs $[(\eta^6-C_6H_6)RuCl_3]$.

Reaction of $[n^6-C_6H_6RuCl_2]_2$ (I) with hot water gives an orange solution from which NH₄PF₆ slowly precipitates an orange solid identified as $[(n^6-C_6H_6)RuCl_3Ru(n^6-C_6H_6)]PF_6$ (II) (yield ca.40%) [1]. From studies based on analogy with the isoelectronic $[n^5-C_5Me_5RhCl_2]_2$ [2], we have now found that II can be readily synthesised in high yield (>90%) by shaking I with an excess of NH₄PF₆ in methanol. However, attempts to synthesise new cationic complexes of type $[L_3RuCl_3RuL_3]PF_6$ by arene displacement from II by an excess of L (L = C₅H₅N, Me₂SO etc.) were unsuccessful. For example, reaction with pyridine in ethanol either under reflux or by photolysis gives $[n^6-C_6H_6RuCl(C_5H_5N)_2]PF_6$ and trans- $[RuCl_2(C_5H_5N)_4]$ and no binuclear complexes. With PMe₂Ph, $[Ru_2Cl_3(PMe_2Ph)_6]Cl$ is isolated, but earlier studies [3] suggest that this is probably formed via *cis*- $[RuCl_2(PMe_2Ph)_4]$.



Reaction of $[\eta^5-C_5Me_5RhCl_2]_2$ with aqueous NaOH gave orange crystals of $[(\eta^5-C_5Me_5)Rh(OH)_3Rh(\eta^5-C_5Me_5)]Cl 4H_2O$ [2]. Similarly, reaction of I with aqueous NaOH gives a dark yellow solution from which on standing,

^{*}To whom correspondence should be addressed.

 $[\eta^6-C_6H_6Ru(OH)_3Ru(\eta^6-C_6H_6)]Cl 3H_2O$ (III), is deposited as a crystalline yellow solid. Likewise, with $[\eta^6-C_6Me_3H_3RuCl_2]_2$ and NaOH, $[\eta^6-C_6Me_3H_3Ru(OH)_3Ru(\eta^6-C_6Me_3H_3)]Cl 3H_2O$ can be isolated*.

In contrast, reaction of I with an excess of caesium chloride and concentrated HCl in ethanol gives an orange powder analysing closely for $Cs[\eta^6-C_6H_6RuCl_3]$ (IV), although it is always difficult to obtain this complex free of CsCl. This product, which is the first reported anionic ruthenium arene complex, is closely related to M[RuCl_3COC_7H_8] (V) (M = Cs, Ph_3(PhCH_2)P; C_7H_8 = bicyclo[2.2.1]-hepta-2,5-diene(norbornadiene)) formed by reaction of [RuCl_2CO(C_7H_8)]_2 with MCl/HCl [4]. However, although V is a good precursor for synthesis of a range of anionic complexes of type Ph_3(PhCH_2)P[RuCl_3COL_2] (L = AsPh_3, C_5H_5N, Me_2SO etc.) [5], attempts to synthesise the unknown fac-[RuCl_3L_3] by reaction of IV with an excess of L gave only the neutral [η^6 -C₆H₆RuCl_2L] compounds.

Acknowledgement

We thank Johnson-Matthey Ltd for loans of ruthenium trichloride and the SRC (DRR) for a research studentship.

References

- 1 M.A. Bennett and A.K. Smith, J. Chem. Soc. Dalton Trans., (1974) 233.
- 2 J.W. Kang and P.M. Maitlis, J. Organometal. Chem., 30 (1971) 127.
- 3 P.W. Armit, A.S.F. Boyd and T.A. Stephenson, J. Chem. Soc. Dalton Trans., (1975) 1663.
- 4 T.A. Stephenson, E.S. Switkes and L. Ruiz-Ramírez, J. Chem. Soc. Dalton Trans., (1973) 2112.
- 5 L. Ruiz-Ramírez and T.A. Stephenson, J. Chem. Soc. Dalton Trans., (1974) 1640.

*All these compounds have been characterised satisfactorily by elemental analysis, conductivity measurements, IR and ¹H NMR spectra.

C30